Sqoop-HDFS与外界交互数据的工具

Sqoop简介

Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

Sqoop项目开始于2009年,最早是作为Hadoop的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop独立成为一个Apache项目。

Sqoop2的最新版本是1.99.7。请注意,2与1不兼容,且特征不完整,它并不打算用于生产部署。

Sqoop原理

将导入或导出命令翻译成mapreduce程序来实现。

在翻译出的mapreduce中主要是对inputformat和outputformat进行定制。

Sqoop安装

安装Sqoop的前提是已经具备Java和Hadoop的环境。

3.1 下载并解压

1) 下载地址:http://mirrors.hust.edu.cn/apache/sqoop/1.4.6/

2) 上传安装包sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz到虚拟机中

3) 解压sqoop安装包到指定目录,如:

 tar -zxf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /opt/module/

3.2 修改配置文件

Sqoop的配置文件与大多数大数据框架类似,在sqoop根目录下的conf目录中。

1) 重命名配置文件

 mv sqoop-env-template.sh sqoop-env.sh

2) 修改配置文件

# sqoop-env.sh

export HADOOP_COMMON_HOME=/opt/module/hadoop-2.7.2

export HADOOP_MAPRED_HOME=/opt/module/hadoop-2.7.2

export HIVE_HOME=/opt/module/hive

export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10

export ZOOCFGDIR=/opt/module/zookeeper-3.4.10

export HBASE_HOME=/opt/module/hbase

3.3 拷贝JDBC驱动

拷贝jdbc驱动到sqoop的lib目录下,如:

cp mysql-connector-java-5.1.27-bin.jar /opt/module/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/lib/

3.4 验证Sqoop

我们可以通过某一个command来验证sqoop配置是否正确:

$ bin/sqoop help

出现一些Warning警告(警告信息已省略),并伴随着帮助命令的输出:

Available commands:

  codegen            Generate code to interact with database records

  create-hive-table     Import a table definition into Hive

  eval               Evaluate a SQL statement and display the results

  export             Export an HDFS directory to a database table

  help               List available commands

  import             Import a table from a database to HDFS

  import-all-tables     Import tables from a database to HDFS

  import-mainframe    Import datasets from a mainframe server to HDFS

  job                Work with saved jobs

  list-databases        List available databases on a server

  list-tables           List available tables in a database

  merge              Merge results of incremental imports

  metastore           Run a standalone Sqoop metastore

  version            Display version information

3.5 测试Sqoop是否能够成功连接数据库

 bin/sqoop list-databases --connect jdbc:mysql://slave2:3306/ --username root --password 000000

出现如下输出:

information_schema
metastore
mysql
oozie
performance_schema

第4章 Sqoop的简单使用案例

4.1 导入数据

在Sqoop中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用import关键字。

4.1.1 RDBMS到HDFS

1) 确定Mysql服务开启正常

2) 在Mysql中新建一张表并插入一些数据

mysql -uroot -p000000

mysql> create database company;

mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));

mysql> insert into company.staff(name, sex) values('Thomas', 'Male');

mysql> insert into company.staff(name, sex) values('Catalina', 'FeMale');

3) 导入数据

 bin/sqoop import \

--connect jdbc:mysql://hadoop102:3306/company \

--username root \

--password 000000 \

--table staff \

--target-dir /user/company \

--delete-target-dir \

--num-mappers 1 \

--fields-terminated-by "\t"

4.2、导出数据

在Sqoop中,“导出”概念指:从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据,叫做:导出,即使用export关键字。

4.2.1 HIVE/HDFS到RDBMS

bin/sqoop export \

--connect jdbc:mysql://hadoop102:3306/company \

--username root \

--password 000000 \

--table staff \

--num-mappers 1 \

--export-dir /user/hive/warehouse/staff_hive \

--input-fields-terminated-by "\t"

提示:Mysql中如果表不存在,不会自动创建


 上一篇
HBase建立二级索引的几种方式 HBase建立二级索引的几种方式
为什么需要HBse二级索引HBase里面只有rowkey作为一级索引, 如果要对库里的非rowkey字段进行数据检索和查询, 往往要通过MapReduce/Spark等分布式计算框架进行,硬件资源消耗和时间延迟都会比较高。 只依赖rowke
2020-01-16
下一篇 
Flume-大数据采集工具 Flume-大数据采集工具
概述Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。 Flume组成架构Flume组成架构如图所示: AgentAgent是一个JVM进程
2020-01-16
  目录